Соотношение формальных силлогистик в языке с предикаторами a, e, i^{1,2}

Шиян Т.А. Соотношение формальных силлогистик в языке с предикаторами а, е, і // Современная логика: проблемы теории, истории и применения в науке: Материалы VIII Общероссийской научной конференции. 24-26 июня 2004. СПб.: Издво СПбГУ, 2004.

Coxpaneno с сайта: http://taras-shiyan.narod.ru.

E-mail: taras_a_shiyan@mail.ru.

В выступлении планируется рассмотреть вопрос, поставленный автором в [5], о соотношении по множеству теорем силлогистик, сформулированных В чистом позитивном языке «силлогистическими связками» а, е, і (язык SL_{a.e.i}). Нас интересуют аналоги 9 формальных теорий: реконструкция аристотелевской силлогистики Я. Лукасевича (С4) [2], реконструированные В. И. Маркиным [2] фрагменты фундаментальной (ФС), больцановской (БС) и кэрролловской (КС) силлогистик, построенные В.А. Смирновым реконструкция фрагмента силлогистики Аристотеля (C2) [2, 3] и ее аналог васильевского типа (C2V) [1, 3], построенные Т.П. Костюк [1] аналоги васильевского типа ФВ, БВ и С4В «классических» теорий ФС, БС и С4. Данные формальные теории входят в два класса дефинициальной эквивалентности: С2, ФС, КС, БС, C2V, ФВ, БВ – в СS, и C4, C4B – в TS.

Формальная теория понимается как множество формул, замкнутое относительно выводимости. В нашем случае это замыкание относительно классической выводимости и операции подстановки терминов. Формальный язык отождествляется с множеством его правильно построенных формул (ППФ).

Для «классических» теорий мы берем их точные фрагменты в $SL_{a,e,i}$: $Car = (C2 \cap SL_{a,e,i}) = (KC \cap SL_{a,e,i})$, $Fc = (\Phi C \cap SL_{a,e,i})$, Bc =

 $^{^1}$ Работа частично выполнена при поддержке РГНФ, грант №03-03-12003в.

² © Шиян Т.А., 2004.

(БС \cap SL_{a,e,i}) и С4с = (С4 \cap SL_{a,e,i}). Для теорий васильевского типа C2V, ФВ, БВ и С4В в качестве связки «Некоторые и только некоторые ... есть ...» вместо буквы t используем i. Получившиеся таким образом теории обозначим C2v, Fv, Bv и C4v. По построению этих теорий понятно, что Car, Fc, Bc, C2v, Fv, Bv входят в класс дефинициальной эквивалентности CS, а C4c, C4v − в TS. Теории Car и C2v, Fc и Fv, Bc и Bv, C4c и C4v буду называть дуальными.

Ниже в таблице (таблица 1) указано, какие аксиомы надо взять для получения теории. Знак "+" в таблице означает, что формула данной строки является аксиомой указанной в столбце системы; "|-" – что формула не является аксиомой, но доказуема в данной системе; "-" – что формула не является теоремой.

	Car	Fc	Bc	C4c	C2v	Fv	Bv	C4v
$\overline{(SaM \wedge MaP)} \supset SaP$	+	+	+	+	+	+	+	+
$(SaM \land MeP) \supset SeP$	+	+	+	+	+	+	+	+
$SeS \supset SeP$	-	-	-	-	+	+	-	+
$SeS \supset SaP$	_	+	-	+	_	+	-	-
$SeP \supset PeS$	-	-	_	-	+	+	_	+
$SeS \vee SaS$	-	-	_	-	+	-	_	+
SaS	_	+	_	-	_	+	_	-
$\neg SeS$	_	_	-	-	_	_	-	+
$SaP \supset \neg SeP$	-	-	-		+	-	+	+
$SeP \supset \neg SiP$	-	-	-	-	+	+	+	+
$SiS \supset SaS$	+	-	+	+	-	-	-	-
$(SaP \lor SiP) \supset SaS$	-	-	-	-	-	-	+	-
$SaS \supset (SaP \lor SeP \lor SiP)$	-	-	-	-	-	-	+	-
$SaP \lor SeP \lor SiP$	-	-	-	-	+	+	_	+
$(SaP \lor SiP) \supset (PaS \lor PiS)$	-	-	-		-	-	+	-
$SaP \supset \neg SiP$	_	_	_	_	+	+	+	+
$SiP \supset SiS$	+	+	+	-	_	_	_	_
$SiP \supset PiS$	+	+	+	+	-	_	-	-
$SaP \supset SiP$	+	_	+	+	_	_	_	_
SeP ≡¬SiP	+	+	_	+	_	_	_	_
$SeP \equiv \neg SiP \wedge SiS$	_	_	+	-	_	_	_	_

В таблице все аксиомы разбиты на четыре группы. Первая группа – формулы не содержащие предикатора «i». Пусть $SL_{a,e}$ – множество

всех ППФ языка $SL_{a,e,i}$, не содержащих предикатора «i». Поскольку классические и васильевские теории различаются только пониманием предикатора «i», то на множестве $SL_{a,e}$ дуальные теории дедуктивно эквивалентны. Вторая группа — формулы, содержащие предикатор «i», которые либо одновременно доказуемы, либо недоказуемы в обоих дуальных теориях. Третья группа — формулы, содержащие предикатор «i», которые доказуемы в теории е.т.е. они не доказуемы в дуальной теории. Четвертая группа — все остальные формулы, содержащие предикатор «i».

Операция объединения теорий + определяется как результат дедуктивного замыкания обычного теоретико-множественного объединения теорий. На восьми рассматриваемых теориях так определенная операция объединения дает следующие результаты (таблица 2):

+	Fc	Car	Bc	C4c	Fv	C2v	Bv	C4v
Fc	Fc	C4c	C4c	C4c	Fcv	\perp	\perp	
Car	C4c	Car	C4c	C4c	上	C2cv	\perp	\perp
Bc	C4c	C4c	Bc	C4c	上	\perp	Bcv	\perp
C4c	C4c	C4c	C4c	C4c	上	\perp	\perp	\perp
Fv	Fcv	Τ.	1	1	Fv	C4v	C4v	C4v
C2v	上	C2cv	\perp	\perp	C4v	C2v	C4v	C4v
$\mathbf{B}\mathbf{v}$	上	\perp				C4v		
C4v		\perp	\perp	\perp	C4v	C4v	C4v	C4v

В таблице $2 \perp$ – противоречивая теория в языке $SL_{a,e,i}$, совпадает с множеством всех $\Pi\Pi\Phi$ $SL_{a,e,i}$. Fcv, C2cv и Bcv – синтаксически полные теории, определяемые следующими аксиомами (таблица 3):

Fcv	C2cv	Bcv	$C_{(1)}v$	$C_{(1)}c$
SaP	¬SaP	¬SaP	SaP	SaP
SeP	SeP	¬SeP	¬SeP	$\neg SeP$
$\neg SiP$	¬SiP	¬SiP	¬SiP	SiP

Из таблицы 1 видно, что $Fcv = Fc + (SaP \supset \neg SiP)$, $C2cv = Car + (SaP \supset \neg SiP)$, $Bcv = Bc + (SaP \supset \neg SiP)$. В семантиках всех трех теорий Fc, Car и Bc (стандартные семантики для ΦC , C2 и BC) высказывание SiP интерпретируется одинаковым образом: $|SiP|=1 \Leftrightarrow \phi(S) \cap \phi(P) \neq \emptyset$. Если предметная область пуста или функция ϕ ограничена и приписывает всякому терму только пустое множество,

то высказывание (¬SiP) будет тождественно истинным и, следовательно, тождественно истинной будет формула (SaP \supset ¬SiP). Отсюда полагаем, что теориям Fcv, C2cv и Bcv адекватны семантики для Fc, Car и Bc, соответственно, но с дополнительным семантическим условием: $U=\emptyset$ или $\forall S(\phi(S)=\emptyset)$.

Теории С4с и С4v не расширяются до С2cv, Fcv, или Bcv. Это вполне понятно, т.к. С4c и С4v требуют непустоты всех термов языка. С4c расширяется до $C_{(1)}$ c, которая является точным фрагментом в языке $SL_{a,e,i}$ теории $C_{(1)}$ [4]. Аналогично, С4v расширяется до $C_{(1)}$ v. Как было показано в [4], $C_{(1)}$ адекватна семантике для C4 с дополнительным требованием одноэлементности предметной области (#U=1) или с условием $\forall S \forall P(\phi(S)=\phi(P))$. Предположительно, $C_{(1)}$ v требует тех же ограничений на семантику для С4v, как $C_{(1)}$ c – на семантику для С4c.

3D-граф на языке VRML, описывающий соотношение рассматриваемых здесь теорий, можно найти в Интернете по адресу: http://theo.ru (в оглавлении сайта раскрыть раздел «Формальные силлогистики» и выбрать пункт «Силлогистики в кэрролловском языке (LSa,e,i)»).

Литература

- 1. Костнок Т.П. Позитивные силлогистики Васильевского типа // Логические исследования. Вып. 6. М.: Наука, 1999. С. 259-267.
- 2. Маркин В.И. Силлогистические теории в современной логике. М., 1991.
- 3. *Смирнов В.А.* Дефинициальная эквивалентность систем силлогистики // Труды научно-исследовательского семинара логического центра Института философии РАН 1993. М., 1994.
- 4. Шиян Т.А. Множество формальных силлогистик с простыми «общими» термами (структурное описание и количественный анализ) // www.logic.ru, Электронный журнал Logical Studies, №8 (2002).
- 5. Шиян T.A. Формально-историческое исследование нескольких групп формальных силлогистик // www.logic.ru, Электронный журнал Logical Studies, №10 (2003) // Логика и В.Е.К. М., 2003.